
Enterprise Service Mesh (ESM)
Istio



ESB is a thing of the past, ESM 
is the future!



Agenda

• Case Study

• Problem Statement

• FooBar Service Upgrade Example

• Istio

• FooBar Service Upgrade Example – With Istio

• Demo

• Discussion



Case Study 

Multi-Cloud Deployment

2000+ 
Monolithic & 

Legacy 
Applications

High Platform & 
Infrastructure 
Dependency

Tightly Coupled 
Database 
Instances

Fragmented or No DevOps Process

Microservices 
Based 

Architecture

Platform & 
Infrastructure 

Agnostic

Data Driven 
Services

Established DevOps Process

External Load Balancer

API Gateway

Internal Load Balancer

Users & Applications

Little to no use of API 
Gateway API Driven Microservices

Cloud Native Strategy for Org Net
High Level Overview

On Premise Deployment



Case Study

This case study investigates the Cloud Native strategy being undertaken by 
(the fictitious) Org Net.

They have over 2000 monolithic and legacy applications, which will be 
refactored to follow microservices based architecture with an API first 
mindset.

Along with it, a strict DevOps process will be put in place, which all teams 
must adhere to.

The core idea here is building modular components using any language 
and deploying anywhere using the automation tools available.



Problem Statement

Going Cloud Native is a good Strategy for Org Net, as it offers many 
benefits over their existing stack.

However, with the distributed nature of the application landscape, service 
discovery & the general application composition becomes extremely 
complex.

A lot of the service orchestration falls on the Load Balancers and the API 
Gateway making them a bottleneck and single point of failure.

This problem amplifies as the service distribution spans across multi-cloud. 
Quickly turning into an Enterprise Service Mess…





https://service.orgnet.com/foo/v1

https://api.orgnet.com/foo

Cloud Native Platform

FooBar Service Upgrade Example

External
Load Balancer

Clients

API Gateway

Foo Service v1

Container

Foo Service v2

Container

Internal
Load Balancer

Ingress
Controller

Bar Service v1

Container

1. Clients of Org Net want to 
consume the Foo service. 
Which is in the process of 
being upgraded.

2. The API Gateway enforces 
security, applies policies and 
routes the request to version 1 
of the Foo service.

3. The API Gateway does not know 
where the service is hosted hence 
relies on the Internal Load 
Balancer to route it to the correct 
destination.

4. Version 1 of the service is 
explicitly called. The API Gateway 
will need to be updated in order for
the new version to be consumed.

5. The integration between Foo 
Service v2 and Bar Service v1 is 
using platform specific URLs. 
Additionally, Bar Service could 
have not enforced TLS resulting in 
insecure communication.



Istio Architecture
Service A

Envoy Proxy

Container

Pilot Mixer Citadel

Service B

Envoy Proxy

Container

Service C

Envoy Proxy

Container

Configuration TLS Certs
Policy & Telemetry

PrometheusGrafana Kiali

mTLS mTLS

DevOps
Process

Engineers



Istio Key Features

The Istio components work together to provide the following key features: -
Feature Details

Traffic Management Request Routing
Discovery & Load Balancing
Handling Failures
Fault Injection

Security Encryption
Identity
Authentication & Authorization

Observability Logging
Metrics
Tracing



Istio Resources

Istio Resources provide a DevOps friendly way to manage the Enterprise 
Service Mesh.
Resource Details

Gateway Configures a Load Balancer for HTTP/TCP traffic, operating on the edge of the 
mesh, enabling ingress traffic for one or more endpoints.

Virtual Service Defines rules, which control how requests are routed within the mesh, including:
request distribution, timeouts & retries, conditions and fault injection.

Destination Rule Connection policies to apply once a Virtual Service routing has occurred, including:
circuit breakers, load balancing type and TLS settings.

Service Entry Configure endpoints, which exist outside of the mesh.

Policy Applies authentication policies to the requests received by a Service. A policy can 
be mesh wide (Mesh Policy) or specific to Namespace and/or one or more 
Services.



Enterprise Service Mesh

FooBar Service – With Istio

foo.orgnet.com
Gateway

foo.orgnet.com
Virtual Service

foo.foo-ns
Virtual Service

foo.foo-ns
Destination Rule

default
Mesh Policy

Load Balancer

Clients

Foo Service v1

Envoy Proxy

Container

Foo Service v2

Envoy Proxy

Container

bar.bar-ns
Virtual Service

bar.bar-ns
Destination Rule

foo-namespace
Policy

bar-namespace
Policy

Bar Service v1

Envoy Proxy

Container

bar.orgnet.com
Virtual Service

1. How the Foo service is 
called has now changed

2. The API Gateway 
has completely 
disappeared. All of its 
responsibilities have 
been assumed by 
Istio.
3. There is only one 
Load Balancer now, 
which routes all traffic 
to the Istio Ingress 
Gateway.

Istio
Ingress Gateway 4. Together with the Virtual Service 

and the Destination Rules, control 
over which version to use is easily 
managed.

5. The integration between Foo 
Service v2 and Bar Service v1 is 
abstracted using a Virtual Service 
as well as mTLS enforced.



Demo
Bookinfo Applicationbookinfo

Gateway
bookinfo

Virtual Service

product
Virtual Service

product
Destination RuleNode Port

Clients Istio
Ingress Gateway

Product Service

Envoy Proxy

Containers
V1

Reviews Service

Envoy Proxy

Containers
V1

review
Virtual Service

review
Destination Rule

Details Service

Envoy Proxy

Containers
V1

Ratings Service

Envoy Proxy

Containers
V1

review
Virtual Service

review
Destination Rule

product
Virtual Service

product
Destination Rule

Containers
V2

Containers
V3

Envoy ProxyEnvoy Proxy

V1 Returns: No Stars

V2 Returns: 

V3 Returns



© 2019 The Marlo Group Pty Ltd

ABN 67 151 355 467

L35 2 Southbank Boulevard
Southbank VIC 3006

www.marlo.com.au


